On the description of electrons on a noncommutative plane threaded by a transversal magnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 353337
(http://iopscience.iop.org/0305-4470/35/14/313)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 02/06/2010 at 10:00

Please note that terms and conditions apply.

On the description of electrons on a noncommutative plane threaded by a transversal magnetic field

E Papp
Department of Physics, North University of Baia Mare, RO-4800 Baia Mare, Romania

Received 10 January 2002
Published 29 March 2002
Online at stacks.iop.org/JPhysA/35/3337

Abstract

In this paper we deal with the quantum-mechanical description of electrons on a noncommutative plane under the influence of a transversal and homogeneous magnetic field. For this purpose the noncommutativity has been implemented by resorting to the quantum Euclidean space relying on the quantum group $S O_{q}(N)$ and to the so-called noncommutative θ-formulation, which is familiar in string theory. Matching conditions have been established and discussed.

PACS numbers: 73.43.-f, 03.65.Sq, 11.10.Lm

1. Introduction

A quantum-mechanical description of electrons on a noncommutative plane threaded by a transversal and homogeneous magnetic field has been discussed recently [1]. Here the noncommutative coordinates are introduced as

$$
\begin{equation*}
[x, y]=\mathrm{i} \theta \tag{1}
\end{equation*}
$$

which proceeds in accordance with string-theory arguments [2]. In general, we have to assume that the noncommutativity parameter θ exhibits very small values such as, for example, $|\theta| \lesssim$ $\left(10^{4} \mathrm{GeV}\right)^{-2}$ [3]. A similar problem has been considered on the noncommutative torus [4]. Alternative descriptions [5] and relationships between the quantized Hall conductivity and the θ-parameter [6] are also worth mentioning. Such issues look promising, even if they are not an absolute novelty. Indeed, the quantization of the Hall conductivity has also been discussed before [7] by using the noncommutative geometry introduced by Connes [8]. Moreover, physical systems such as the hydrogen atom [9,10] and the harmonic oscillator [11, 12] have been discussed in some detail on the noncommutative quantum Euclidean space. In this latter case, both commutation relations and the metric tensor are established by virtue of the \boldsymbol{R} matrix description of the quantum group $S O_{q}(N)$, where N denotes the number of space dimensions [13]. A radial reduction of the covariant $S O_{q}(N)$-derivative has been done, which results in the onset of the Jackson derivative [14, 15]. Accordingly, well-defined q-deformed versions of the radial Schrödinger equations have been written down $[16,17]$. Now the related
deformation parameter is denoted by q, which has to be viewed (excepting generic cases in which q is a pure phase) as being very near to unity, i.e.

$$
\begin{equation*}
q=\exp \gamma \cong 1+\gamma \tag{2}
\end{equation*}
$$

Now the question arises how to compare the θ - and q-noncommutative descriptions mentioned above. For this purpose we perform the description of electrons on the quantum Euclidean plane, which proceeds under the influence of a transversal magnetic field $\vec{B}=$ $(0,0, B)$. This opens the way to establishing quite a meaningful relationship between θ - and q-parameters, now in terms of the matching condition for the energy.

2. Noncommutative preliminaries and q-deformations

The commutation relations characterizing the three-dimensional quantum Euclidean space are given by [13]

$$
\begin{align*}
& x_{1} x_{2}=q x_{2} x_{1} \tag{3}\\
& x_{2} x_{3}=q x_{3} x_{2} \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
x_{1} x_{3}-x_{3} x_{1}=\frac{1-q}{\sqrt{q}} x_{2} x_{2} \tag{5}
\end{equation*}
$$

Inserting $x_{1}=(x+i y) / \sqrt{2}$ and $x_{3}=(x-\mathrm{i} y) / \sqrt{2}$ into (5) gives

$$
\begin{equation*}
[x, y]=-2 \mathrm{i} \sinh \frac{\gamma}{2} x_{2} x_{2} \tag{6}
\end{equation*}
$$

in which x_{2} corresponds to the z-coordinate. Comparing (1) and (6) yields the intermediary result

$$
\begin{equation*}
\theta=-2 \sinh \frac{\gamma}{2} x_{2} x_{2} \tag{7}
\end{equation*}
$$

which also shows that $x_{2} x_{2}$ remains to be fixed. Keeping in mind this conjecture, we then deal properly with electrons on a selected noncommutative quantum plane which is perpendicular to the direction of the magnetic field, i.e. with a problem in $2+1$ space dimensions. Of course, equations (3)-(5) reproduce the usual commutative coordinates as soon as $q \rightarrow 1$. Such behaviours can be traced back to the noncommutative space-time proposed long ago by Snyder [18]. In this latter case, the usual coordinates are reproduced if the 'elementary length' tends to zero, which agrees with equation (1). The θ-parameter can be viewed, of course, as the square of related 'elementary length' l_{0}, i.e. $\theta=l_{0}^{2}$ or $\theta=-l_{0}^{2}$.

The radial coordinate is introduced by

$$
\begin{equation*}
r^{2}=C_{i j} x^{i} x^{j}=x^{i} x_{i} \tag{8}
\end{equation*}
$$

where $C_{i j}$ is the metric tensor, so that $\left[r^{2}, x_{i}\right]=0$ [13]. This enables us to perform the radial reduction of the covariant derivative ∂_{i} as

$$
\begin{equation*}
\partial_{i}=\frac{x_{i}}{r} \partial_{r}^{(q)} \tag{9}
\end{equation*}
$$

in which case

$$
\begin{equation*}
\partial_{r}^{(q)} f(r)=\frac{\mu}{q+1} \frac{d_{q} f(r)}{d_{q} r}=\frac{\mu}{q+1} \frac{f(q r)-f(r)}{r(q-1)} \tag{10}
\end{equation*}
$$

where $\mu=1+q^{2-N}$. We are then ready to define the $S O_{q}(N)$-deformed counterpart of the reduced radial Schrödinger equation as (see section 3 in [17])

$$
\begin{gather*}
{\left[-\frac{q}{(q+1)^{2}}\left(q^{L}+q^{-L}\right)^{2} \partial_{r}^{(q)^{2}}-\frac{\mu^{2} q^{2}}{(q+1)^{4}}[[-2 l-N+1]]_{q}[[2 l+N-3]]_{q} \frac{1}{r^{2}}\right.} \\
+V(r)] \varphi_{q}(r)=\mathcal{E}_{q} \varphi_{q}(r) \tag{11}
\end{gather*}
$$

where $L=l+(N-2) / 2$ and where $l=0,1,2, \ldots$ denotes the quantum number of the angular momentum, as usual. One has, in general, $N \geqslant 2$, but extrapolations to $N=1$ can also be done. The pertinent quantum numbers are defined as

$$
\begin{equation*}
[[n]]_{q}=\frac{q^{n}-1}{q-1} \equiv q^{\frac{n-1}{2}}[n]_{\sqrt{q}} \tag{12}
\end{equation*}
$$

Choosing, for example, the harmonic oscillator and inserting $V(r)=\omega^{2} r^{2}$ gives the q deformed energy $[12,19]$

$$
\begin{equation*}
\mathcal{E}_{\gamma}=\frac{\mu \omega}{(q+1) q^{d_{0}}}\left[\left[2 d_{0}^{O}\right]\right]_{q}=\frac{\mu \omega}{q}\left[d_{0}^{O}\right]_{q} \tag{13}
\end{equation*}
$$

where $d_{0}^{O}=l+2 n_{r}+N / 2$ denotes the principal quantum number, whereas $n_{r}=0,1,2, \ldots$ represents the radial quantum number. This result will be invoked in the next section. Other q-deformed radial equations can be readily established for related wavefunctions such as

$$
\begin{equation*}
\psi_{q}(r)=r^{l} f_{q}(r)=r^{l+\delta} \varphi_{q}(r) \tag{14}
\end{equation*}
$$

where $q^{\delta}=\left(1+q^{-2 L}\right) /(q+1)$.

3. Two-dimensional electrons under the influence of the magnetic field

The classical Hamiltonian describing two-dimensional electrons under the influence of a transversal and homogeneous magnetic field reads

$$
\begin{equation*}
\mathcal{H}=\frac{1}{2 m_{0}}(\vec{p}+e \vec{A})^{2} \tag{15}
\end{equation*}
$$

where $e>0$. We choose the vector potential in the symmetric gauge as

$$
\begin{equation*}
\vec{A}=\left(-\frac{B}{2} y, \frac{B}{2} x, 0\right) \tag{16}
\end{equation*}
$$

Inserting the wavefunction

$$
\begin{equation*}
\Phi(\vec{x})=\exp \left(\mathrm{i} m \varphi_{0}\right) \frac{\varphi(\rho)}{\sqrt{\rho}} \tag{17}
\end{equation*}
$$

into the Schrödinger equation $\mathcal{H} \Phi=E \Phi$ gives the reduced dimensionless radial equation for an harmonic oscillator

$$
\begin{equation*}
-\frac{\mathrm{d}^{2} \varphi}{\mathrm{~d} \xi^{2}}+\frac{m^{2}-1 / 4}{\xi^{2}} \varphi+\lambda_{0}^{2} \xi^{2} \varphi=\mathcal{E} \varphi \tag{18}
\end{equation*}
$$

where $\rho=a \xi, \varphi(\xi) \in\left\{L_{2}(0, \infty), \mathrm{d} \xi\right\}$,

$$
\begin{equation*}
\mathcal{E}=\frac{2 m_{0} a^{2}}{\hbar^{2}} E^{O} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{O}=E-\frac{m}{2} \hbar \omega_{c} \tag{20}
\end{equation*}
$$

The cyclotron frequency is $\omega_{c}=e B / m_{0}$ and

$$
\begin{equation*}
\lambda_{0}^{2}=\frac{e^{2} B^{2} a^{4}}{4 \hbar^{2}}=\frac{a^{4}}{4 l_{C}^{2} l_{O}^{2}} \tag{21}
\end{equation*}
$$

The magnetic quantum number exhibits the values $m=0, \pm 1, \pm 2, \ldots$, whereas ρ and φ_{0} are the polar coordinates characterizing the classical (x, y)-plane. It is also clear that ' a ' is an arbitrary length scale, $l_{C}=\hbar / m_{0} c$ denotes the Compton wavelength, while $l_{O}=c / \omega_{c}$ is a typical length characterizing the harmonic oscillator in equation (18). This latter equation is well known in the literature and general solutions have been written down in terms of Laguerre polynomials [20]. Now one has $L=|m|$ and $N=2$, so that $l=|m|$. The principal quantum number is then given by

$$
\begin{equation*}
d_{0}=d_{0}^{O}=|m|+2 n_{r}+1=1,2,3, \ldots . \tag{22}
\end{equation*}
$$

A standard harmonic oscillator, say $\omega_{0}^{2} \xi^{2}$, can also be inserted into equation (18), which amounts to the substitution

$$
\begin{equation*}
\omega_{c}^{2} \rightarrow \Omega_{c}^{2}=\omega_{c}^{2}+4 \omega_{0}^{2} \tag{23}
\end{equation*}
$$

Using equations (13) and (22), we can then say that the q-deformed counterpart of E^{O} is

$$
\begin{equation*}
E_{\gamma}^{O}=\frac{\hbar}{2 q} \Omega_{c}\left[d_{0}^{O}\right]_{q}=\frac{\hbar}{2} \Omega_{c} \frac{\sinh \left(\gamma d_{0}^{O}\right)}{q \sinh (\gamma)} . \tag{24}
\end{equation*}
$$

It is understood that the q-deformation of the classical eigenfunction [20]

$$
\begin{equation*}
\varphi(\xi)=\left[\frac{2 \Gamma\left(n_{r}+1\right)}{\Gamma\left(|m|+n_{r}+1\right)}\right]^{1 / 2} \lambda_{0}^{(|m|+1 / 2) / 2} \exp \left(-\frac{\lambda_{0}}{2} \xi^{2}\right) L_{n_{r}}^{(|m|)}\left(\lambda_{0} \xi^{2}\right) \tag{25}
\end{equation*}
$$

remains to be done in terms of q-Laguerre polynomials [15].
On the other hand, the Hamiltonian (15) has been discussed recently within the noncommutative θ-description [21]. This enables us to say that the θ-counterpart of E^{O} is given by

$$
\begin{equation*}
E_{\theta}^{O}=\frac{\hbar}{2} \Omega_{c} d_{0}^{O}\left[1+\frac{\theta}{2 l_{C} l_{O}}+\left(\frac{\theta}{4 l_{C} l_{O}}\right)^{2} \Gamma_{0}\right]^{1 / 2} \tag{26}
\end{equation*}
$$

by virtue of equation (32) in [21], where $\Gamma_{0}=1+4 \omega_{0}^{2} / \omega_{c}^{2}$. This time the energy-splitting term has not been accounted for, as one deals selectively with the Hamiltonian of a radial harmonic oscillator. Alternatively, we can assume that $m=0$, in which case the splitting term is ruled out from the very beginning. Now one realizes immediately that the matching condition

$$
\begin{equation*}
E_{\theta}^{O}=E_{\gamma}^{O} \tag{27}
\end{equation*}
$$

is fulfilled if

$$
\begin{equation*}
\theta=\theta_{ \pm}=\frac{4 l_{C} l_{O}}{\Gamma_{0}}\left[-1 \pm\left(1-2 \gamma \Gamma_{0}\right)^{1 / 2}\right] \tag{28}
\end{equation*}
$$

which works to first γ-order. Choosing $\theta=\theta_{+}$gives

$$
\begin{equation*}
\theta=\theta_{+} \cong-4 \gamma l_{C} l_{O} \tag{29}
\end{equation*}
$$

One would then obtain

$$
\begin{equation*}
x_{2} x_{2} \cong 4 l_{C} l_{O} \tag{30}
\end{equation*}
$$

by virtue of equation (7), which indicates that the quantum noncommutative plane should be located at

$$
\begin{equation*}
z=z_{0} \cong 2 \sqrt{l_{C} l_{O}} \tag{31}
\end{equation*}
$$

which represents an unexpected finding. An 'elementary length' could also be proposed via $\theta_{+} \cong-l_{0}^{2}$, in which case

$$
\begin{equation*}
l_{0} \cong \sqrt{\gamma} z_{0} \tag{32}
\end{equation*}
$$

which may be of interest from a general theoretical point of view.

4. Conclusions

In this paper we have discussed certain details concerning the description of electrons on a noncommutative plane threaded by a perpendicular and homogeneous magnetic field. For this purpose the noncommutative quantum Euclidean description has been analysed versus the noncommutative θ-description. Selecting the Hamiltonian with the quadratic interaction, we found that both descriptions produce the same energy if underlying deformation parameters, i.e. γ and θ, are inter-related, such as given by equation (28). We can then say that under the influence of noncommutativity, the principal quantum number d_{0}^{O} characterizing the equivalent two-dimensional harmonic oscillator becomes deformed as

$$
\begin{equation*}
d_{0}^{O} \rightarrow d_{\gamma}^{O}=\frac{1}{q}\left[d_{0}^{O}\right]_{q} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{0}^{O} \rightarrow d_{\theta}^{O}=d_{0}^{O} \sqrt{1+\frac{\theta}{2 l_{C} l_{O}}+\left(\frac{\theta}{4 l_{C} l_{O}}\right)^{2} \Gamma_{0}} \tag{34}
\end{equation*}
$$

In addition, we have also found that the location of the noncommutative plane becomes well established by virtue of equation (31), so that $z_{0} \rightarrow \infty$ if $B \rightarrow 0$.

Acknowledgments

I would like to thank CNCSIS/Bucharest for financial support, and I would also like to thank H D Doebner, W Bestgen and M Visinescu for interesting discussions.

References

[1] Dayi Ö F and Jellal A 2001 Phys. Lett. A 287349
[2] Seiberg N and Witten E 1999 J. High Energy Phys. JHEP09(1999)032
[3] Chaichian M, Sheikh-Jabari M M and Tureanu A 2001 Phys. Rev. Lett. 862716
[4] Morariu B and Polychronakos A P 2001 Nucl. Phys. B 610531
[5] Nair V P and Polychronakos A P 2001 Phys. Lett. B 505267
[6] Susskind L 2001 The quantum hall fluid and non-commutative Chern Simons theory Preprint hep-th/0101029
[7] Bellisard J, Van Elst A and Schulz-Baldes H 1994 J. Math. Phys. 355373
[8] Connes A 1990 Géométrie Non Commutative (Paris: InterEditions)
[9] Song X C and Liao L 1992 J. Phys. A: Math. Gen. 25623
[10] Feigenbaum G and Freund P G O 1996 J. Math. Phys. 371602
[11] Fiore G 1993 Int. J. Mod. Phys. A 84679
[12] Watamura U C and Watamura S 1994 Int. J. Mod. Phys. A 93989
[13] Reshetikhin N Yu, Takhtadzhyan L A and Faddeev L D 1990 Leningrad Math. J. 1193
[14] Jackson M A 1909 Mess. Math. 3857
[15] Gasper G and Rahman M 1990 Basic Hypergeometric Series (Cambridge: Cambridge University Press)
[16] Papp E 1995 Phys. Rev. A 52101
[17] Papp E 1997 Derivation of q-Analogs for the Radial Schrödinger Equation in N Space Dimensions (New York: Nova Science)
[18] Snyder H S 1947 Phys. Rev. 7138
[19] Papp E 1996 J. Phys. A: Math. Gen. 291795
[20] Kostelecky V A and Russell N 1996 J. Math. Phys. 372166
[21] Jellal A 2001 J. Phys. A: Math. Gen. 3410159

