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Abstract
In this paper we deal with the quantum-mechanical description of electrons on
a noncommutative plane under the influence of a transversal and homogeneous
magnetic field. For this purpose the noncommutativity has been implemented
by resorting to the quantum Euclidean space relying on the quantum group
SOq(N) and to the so-called noncommutative θ -formulation, which is familiar
in string theory. Matching conditions have been established and discussed.

PACS numbers: 73.43.−f, 03.65.Sq, 11.10.Lm

1. Introduction

A quantum-mechanical description of electrons on a noncommutative plane threaded by
a transversal and homogeneous magnetic field has been discussed recently [1]. Here the
noncommutative coordinates are introduced as

[x, y] = iθ (1)

which proceeds in accordance with string-theory arguments [2]. In general, we have to assume
that the noncommutativity parameter θ exhibits very small values such as, for example, | θ |�
(104 GeV)−2 [3]. A similar problem has been considered on the noncommutative torus [4].
Alternative descriptions [5] and relationships between the quantized Hall conductivity and the
θ -parameter [6] are also worth mentioning. Such issues look promising, even if they are not
an absolute novelty. Indeed, the quantization of the Hall conductivity has also been discussed
before [7] by using the noncommutative geometry introduced by Connes [8]. Moreover,
physical systems such as the hydrogen atom [9, 10] and the harmonic oscillator [11, 12] have
been discussed in some detail on the noncommutative quantum Euclidean space. In this latter
case, both commutation relations and the metric tensor are established by virtue of the R-
matrix description of the quantum group SOq(N), where N denotes the number of space
dimensions [13]. A radial reduction of the covariant SOq(N)-derivative has been done, which
results in the onset of the Jackson derivative [14, 15]. Accordingly, well-defined q-deformed
versions of the radial Schrödinger equations have been written down [16,17]. Now the related
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deformation parameter is denoted by q, which has to be viewed (excepting generic cases in
which q is a pure phase) as being very near to unity, i.e.

q = exp γ ∼= 1 + γ. (2)

Now the question arises how to compare the θ - and q-noncommutative descriptions
mentioned above. For this purpose we perform the description of electrons on the quantum
Euclidean plane, which proceeds under the influence of a transversal magnetic field �B =
(0, 0, B). This opens the way to establishing quite a meaningful relationship between θ - and
q-parameters, now in terms of the matching condition for the energy.

2. Noncommutative preliminaries and q-deformations

The commutation relations characterizing the three-dimensional quantum Euclidean space are
given by [13]

x1x2 = qx2x1 (3)

x2x3 = qx3x2 (4)

and

x1x3 − x3x1 = 1 − q√
q
x2x2. (5)

Inserting x1 = (x + iy)/
√

2 and x3 = (x − iy)/
√

2 into (5) gives

[x, y] = −2i sinh
γ

2
x2x2 (6)

in which x2 corresponds to the z-coordinate. Comparing (1) and (6) yields the intermediary
result

θ = −2 sinh
γ

2
x2x2 (7)

which also shows that x2x2 remains to be fixed. Keeping in mind this conjecture, we then deal
properly with electrons on a selected noncommutative quantum plane which is perpendicular
to the direction of the magnetic field, i.e. with a problem in 2 + 1 space dimensions. Of
course, equations (3)–(5) reproduce the usual commutative coordinates as soon as q → 1.
Such behaviours can be traced back to the noncommutative space-time proposed long ago by
Snyder [18]. In this latter case, the usual coordinates are reproduced if the ‘elementary length’
tends to zero, which agrees with equation (1). The θ -parameter can be viewed, of course, as
the square of related ‘elementary length’ l0, i.e. θ = l20 or θ = −l20 .

The radial coordinate is introduced by

r2 = Cijxixj = xixi (8)

where Cij is the metric tensor, so that [r2, xi] = 0 [13]. This enables us to perform the radial
reduction of the covariant derivative ∂i as

∂i = xi

r
∂(q)r (9)

in which case

∂(q)r f (r) = µ

q + 1

dqf (r)

dqr
= µ

q + 1

f (qr)− f (r)
r(q − 1)

(10)
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where µ = 1 + q2−N . We are then ready to define the SOq(N)-deformed counterpart of the
reduced radial Schrödinger equation as (see section 3 in [17])[
− q

(q + 1)2
(qL + q−L)2∂(q)

2

r − µ2q2

(q + 1)4
[[−2l −N + 1]]q [[2l +N − 3]]q

1

r2

+ V (r)

]
ϕq(r) = Eqϕq(r) (11)

whereL = l+(N−2)/2 and where l = 0, 1, 2, . . . denotes the quantum number of the angular
momentum, as usual. One has, in general, N � 2, but extrapolations to N = 1 can also be
done. The pertinent quantum numbers are defined as

[[n]]q = qn − 1

q − 1
≡ q n−1

2 [n]√q . (12)

Choosing, for example, the harmonic oscillator and inserting V (r) = ω2 r2 gives the q-
deformed energy [12, 19]

Eγ = µω

(q + 1)qd0
[[2dO0 ]]q = µω

q
[dO0 ]q (13)

where dO0 = l + 2nr + N/2 denotes the principal quantum number, whereas nr = 0, 1, 2, . . .
represents the radial quantum number. This result will be invoked in the next section. Other
q-deformed radial equations can be readily established for related wavefunctions such as

ψq(r) = rlfq(r) = rl+δϕq(r) (14)

where qδ = (1 + q−2L)/(q + 1).

3. Two-dimensional electrons under the influence of the magnetic field

The classical Hamiltonian describing two-dimensional electrons under the influence of a
transversal and homogeneous magnetic field reads

H = 1

2m0
( �p + e �A)2 (15)

where e > 0. We choose the vector potential in the symmetric gauge as

�A =
(

−B
2
y,
B

2
x, 0

)
. (16)

Inserting the wavefunction

%(�x) = exp(imϕ0)
ϕ(ρ)√
ρ

(17)

into the Schrödinger equation H% = E% gives the reduced dimensionless radial equation for
an harmonic oscillator

−d2ϕ

dξ 2
+
m2 − 1/4

ξ 2
ϕ + λ2

0ξ
2ϕ = Eϕ (18)

where ρ = aξ , ϕ(ξ) ∈ {L2(0,∞), dξ},

E = 2m0a
2

h̄2 EO (19)

and

EO = E − m

2
h̄ωc. (20)
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The cyclotron frequency is ωc = eB/m0 and

λ2
0 = e2B2a4

4h̄2 = a4

4l2Cl
2
O

. (21)

The magnetic quantum number exhibits the valuesm = 0,±1,±2, . . . , whereas ρ and ϕ0 are
the polar coordinates characterizing the classical (x, y)-plane. It is also clear that ‘a’ is an
arbitrary length scale, lC = h̄/m0c denotes the Compton wavelength, while lO = c/ωc is a
typical length characterizing the harmonic oscillator in equation (18). This latter equation is
well known in the literature and general solutions have been written down in terms of Laguerre
polynomials [20]. Now one has L = |m| and N = 2, so that l = |m|. The principal quantum
number is then given by

d0 = dO0 = |m| + 2nr + 1 = 1, 2, 3, . . . . (22)

A standard harmonic oscillator, say ω2
0ξ

2, can also be inserted into equation (18), which
amounts to the substitution

ω2
c → -2

c = ω2
c + 4ω2

0. (23)

Using equations (13) and (22), we can then say that the q-deformed counterpart of EO is

EOγ = h̄

2q
-c[d

O
0 ]q = h̄

2
-c

sinh(γ dO0 )

q sinh(γ )
. (24)

It is understood that the q-deformation of the classical eigenfunction [20]

ϕ(ξ) =
[

2.(nr + 1)

.(|m| + nr + 1)

]1/2

λ
(|m|+1/2)/2
0 exp

(
−λ0

2
ξ 2

)
L(|m|)
nr
(λ0ξ

2) (25)

remains to be done in terms of q-Laguerre polynomials [15].
On the other hand, the Hamiltonian (15) has been discussed recently within the

noncommutative θ -description [21]. This enables us to say that the θ -counterpart of EO

is given by

EOθ = h̄

2
-cd

O
0

[
1 +

θ

2lClO
+

(
θ

4lClO

)2

.0

]1/2

(26)

by virtue of equation (32) in [21], where .0 = 1 + 4ω2
0/ω

2
c . This time the energy-splitting term

has not been accounted for, as one deals selectively with the Hamiltonian of a radial harmonic
oscillator. Alternatively, we can assume that m = 0, in which case the splitting term is ruled
out from the very beginning. Now one realizes immediately that the matching condition

EOθ = EOγ (27)

is fulfilled if

θ = θ± = 4lClO
.0

[−1 ± (1 − 2γ.0)
1/2] (28)

which works to first γ -order. Choosing θ = θ+ gives

θ = θ+
∼= −4γ lClO. (29)

One would then obtain

x2x2
∼= 4lClO (30)

by virtue of equation (7), which indicates that the quantum noncommutative plane should be
located at

z = z0
∼= 2

√
lClO (31)

which represents an unexpected finding. An ‘elementary length’ could also be proposed via
θ+

∼= −l20 , in which case

l0
∼= √

γ z0 (32)

which may be of interest from a general theoretical point of view.
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4. Conclusions

In this paper we have discussed certain details concerning the description of electrons on a
noncommutative plane threaded by a perpendicular and homogeneous magnetic field. For
this purpose the noncommutative quantum Euclidean description has been analysed versus the
noncommutative θ -description. Selecting the Hamiltonian with the quadratic interaction, we
found that both descriptions produce the same energy if underlying deformation parameters,
i.e. γ and θ , are inter-related, such as given by equation (28). We can then say that under the
influence of noncommutativity, the principal quantum number dO0 characterizing the equivalent
two-dimensional harmonic oscillator becomes deformed as

dO0 → dOγ = 1

q
[dO0 ]q (33)

and

dO0 → dOθ = dO0
√

1 +
θ

2lClO
+

(
θ

4lClO

)2

.0. (34)

In addition, we have also found that the location of the noncommutative plane becomes well
established by virtue of equation (31), so that z0 → ∞ if B → 0.
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